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Accurate densities of states for metallic compounds from
parametrized tight-binding calculations?
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Institut für Physik, Max-Planck-Institut für Metallforschung, Heisenbergstraße 1, 70569 Stuttgart,
Germany

Received 10 July 1996, in final form 4 September 1996

Abstract. The local density of states is calculated for an Fe atom in various 4d transition-
metal hosts on the one hand by the linear-muffin-tin-orbital method in the atomic-sphere
approximation, and on the other hand by a two-centre orthogonal Slater–Koster tight-binding
method supplemented by the demand for local charge neutrality. The comparison demonstrates
that the latter method is able to yield accurate densities of states for metallic compounds.

In the conventional tight-binding (TB) schemes there is no self-consistency between the
elements of the TB Hamiltonian matrix and the output charge density obtained from the TB
calculation: they may be derived from the Harris–Foulkes approximation (see, for instance,
[1] and references therein) and thus yield an expression for the binding energy that is
correct to first order in the charge density. In spite of the many successful applications
of these schemes, there are also limitations. For instance, it is well known [1] that for
the calculation of second-order quantities such as force constants or heats of formation
some form of approximate self-consistency has to be included. The simplest form of self-
consistency is to assume that due to the excellent screening properties of a metal each
atom remains charge neutral. In a TB calculation, local charge neutrality (LCN) can be
achieved by varying the on-site matrix elements of the TB Hamiltonian for each atomα

in an appropriate way, thereby fixing the splittings between different orbitals on the same
atom. (Alternatively, a Hubbard-like term may be added [2] to the TB Hamiltonian and
LCN may be achieved by using an infinitely large HubbardU .) This procedure leads to
a consistent picture of the heats of formation of transition-metal alloys [3]. Because the
binding energy is mainly determined by lower moments of the electronic densities of states,
Zα(E), this means that these lower moments are reasonably well obtained by a TB method
with LCN. Furthermore, the TB scheme with LCN has been also used for the treatment of
surfaces and interfaces [2].

In the present paper we want to demonstrate that the TB method with LCN is even
able to yield highly accurate local electronic densities of states, i.e., to determine also the
higher moments. Accurate information on the density of states is required, for example, in
the theory of magnetism, because the paramagnetic state of atomα becomes unstable if the
Stoner criterion [4],Zα(EF )I > 1, is fulfilled, whereI is the Stoner exchange integral and
EF denotes the Fermi energy. An accurate determination ofZα(EF ) is highly critical when
EF is located in an energy regime with strong variations of the electronic density of states,
which is, for instance, the case for Fe atoms in various hosts (see below). For systems
with constituents of different electronegativities the conventional TB calculations would
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yield considerable and unphysical charge transfers between the various atoms which could
seriously affect the local densities of states. Nevertheless, most of the TB investigations of
magnetism in alloys and compounds (see, for instance, [5–7]) did not introduce LCN but
used for the on-site matrix elements of the constituents the values obtained for the respective
perfect elementary crystals. Lorenz and Hafner [8] emphasized the importance of local
self-consistency for the influence of the local atomic structure on the local electronic and
magnetic properties. In their treatment of noncollinear spin systems they therefore used the
self-consistent spin-averaged matrix elements obtained from a TB–LMTO calculation [9] for
the ferromagnetic state of the considered atomic arrangement to represent the paramagnetic
part of the TB Hamiltonian. Thereby, self-consistency holds both for the on-site and for
the off-site matrix elements.

In the present paper we want to demonstrate that the most important effect is the self-
consistency of the on-site matrix elements and that this is indeed approximately achieved by
imposing LCN. The calculations are performed for an Fe atom in various 4d transition-metal
(T) hosts in a bcc configuration, for the following reasons:

(i) There is high interest in these systems, because it was found experimentally [10] that
the magnetic moment on the Fe atom disappears for Nb, but is rather large for Mo. This
experimental result raised the question of under what circumstances a magnetic moment on
a transition metal impurity exists.Ab initio calculations [11–13] based on the local-spin-
density approximation elucidated the important role of crystal symmetry for this problem.

(ii) There is already much information available on the local density of states from the
above-mentionedab initio calculations.

(iii) In most of these systemsEF is located in a regime of strong variation of the local
density of states. Predictions on magnetism based on the Stoner criterion thus indeed require
highly accurate determinations of the density of states.

The calculations were performed for an eight-atom supercell FeT7 and are based on a
two-centre orthogonal Slater–Koster TB method [14], taking into account off-site matrix
elements up to third-nearest neighbours. For the lattice constants we insert the values
obtained by a LMTO–ASA calculation [9] for the pure bcc T host. The matrix elements
for the constituents were obtained by fitting the TB eigenvalue spectrum of the elementary
bcc crystals to theab initio eigenvalue spectrum from the LMTO–ASA calculation for
the respective lattice constants. (Crystal field splittings of the on-site matrix elements
thereby were neglected.) It thereby turned out that it was not sufficient to determine the
matrix elements once for Fe for the equilibrium lattice constant of bcc Fe and to scale
the off-site matrix elements according to Harrison [14], for instance, in order to obtain
the respective parameters for the equilibrium lattice constants of the T hosts. For lattice
constants which differ considerably from the equilibrium lattice constant of bcc Fe the
thus-obtained bandstructure of Fe deviated strongly from the correspondingab initio band
structure. There is some systematics concerning the signs and the relative magnitudes of
the off-site matrix elements. Most the the ssσ , ddσ , sdσ and pdσ elements are negative, the
ddδ elements are sometimes positive, sometimes negative, and the other matrix elements are
mainly positive. The ppσ elements are the largest ones; the ddδ elements are smallest. Most
matrix elements decay monotonically with distance. Exceptions, for instance, are the ppσ

matrix elements of Y, Zr, Nb and Mo, which are largest for the next-nearest neighbours. The
mixed off-site matrix elements between Fe and T were calculated from the corresponding
matrix elements of the elementary crystals by geometrical averaging for the case of equal
signs. For different signs the mixed matrix elements were set equal to zero. (This concerns
mainly the ddδ matrix elements which are often the smallest dd matrix elements.) The
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Figure 1. Local density of states per spin,ZFe(E), for the Fe atom in FeT7. Left: LMTO, right:
TB; dashed line: contribution of d-T2g states, dotted line: d-Eg states, full line: total density of
states; dashed vertical line:EF .
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Figure 1. Continued.
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Figure 1. Continued.
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Figure 2. 1εd = εd (Fe) − εd (T) for FeT7.

on-site matrix elements for the Fe atom then were shifted until LCN for the Fe atom was
achieved. (This does not necessarily guarantee LCN for all the T atoms in the supercell,
but even for the system with the largest difference in electronegativities (FeY7) the charge
transfer between crystallographically different Y atoms was less than 0.15 electrons per
atom.)

Figure 1 shows a comparison of the density of states for FeT7 obtained by LMTO–ASA
calculations [11] and by the present TB calculations. In both calculations, 47k points
in the irreducible part of the Brillouin zone of the supercell were used and the density
of states was constructed by use of the tetrahedron method [15]. There is a very good
agreement for the whole transition-metal series, although the shape of the density of states
curves changes drastically across the series. With the calculated density of states at the
Fermi energy,ZFe(EF ), and the intraatomic exchange integralIFe = 0.068 Ryd, the Stoner
criterion predicts that the Fe atom should be magnetic for all T except for T= Zr, Nb,
in agreement with the predictions of theab initio calculations [11–13]. Altogether, this
demonstrates that a TB calculation supplemented by the demand for LCN is indeed able to
yield accurate densities of states for compounds.

It should be noted that Shore and Papaconstantopoulos [16] used a different idea and
obtained a TB model for compounds from the TB parameters of the constituents and an
alignment of theEF by shifting the on-site parameters for one constituent. This does
not necessarily guarantee LCN, especially when there are strong modifications of the
hybridization by the formation of the compound as in the system FeT7: for T = Ag
the density of states curve at the Fe atom is very narrow, it broadens when going to the
middle of the 4d series and it is again narrow at the left-hand side of the d series. The
degree of hybridization thereby is mainly determined by the interatomic distance and by the
difference1εd = εd(Fe)−εd(T). An analysis of theab initio data [11, 12] and the present
TB results demonstrates that the small bandwidth at the left-hand side originates mainly
from the strong increase of the lattice constant when going from Mo to Y, whereas it is
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caused on the right-hand side by the increase in1εd when going from Tc to Ag (figure 2),
where the lattice constant varies only slightly [17].
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[12] Fähnle M, Beuerle T, Hummler K and Elsässer C 1995J. Magn. Magn. Mater.140–144111
[13] Nogueira R N and Petrilli H M 1996 Phys. Rev.B 53 15 071
[14] Harrison W A 1989Electronic Structure and the Properties of Solids(New York: Dover)
[15] Lehmann G and Taut M 1972Phys. Status Solidib 54 469
[16] Shore J D and Papaconstantopoulos D A 1987Phys. Rev.B 35 1122
[17] Mackintosh A R and Andersen O K 1980 Electrons at the Fermi Surfaceed M Springford (Cambridge:

Cambridge University Press)


